虎克的博客

Enthusiasm Biogeography-Biodiversity Informatics-Data Sciences

旧世界植物的驯化

| Comments

Oxford University Press, USA; 3 edition (March 22, 2001)

农业的起源是其中一个决定性的事件是人类历史上。一万年前带狩猎-采集开始放弃他们的高流动性的生活方式,在有利于种植作物,并建立解决,久坐社区。这在解决有利于农业的生活方式引发的演变复杂的政治和经济结构,和技术的发展,并最终下,崛起的所有伟大的文明最近的人类历史。驯化的植物,在旧世界的评语的起源和传播的栽培在西南方的亚洲,欧洲和东北部非洲,从最早的开端。这个新版本包含了最近期的研究结果从分子生物学有关的遗传关系驯化植物和其野生的祖先,它增加了材料的一些新的作物;它包含了广泛的考古新资料的传播,农业在该地区内。参考名单已完全更新,有名单,考古遗址和网站地图。  <br>从评论的第二版: '这本书的确是一个“地雷的信息” 。是一个十分巨大而多样的体重要成果,是消化,并介绍了在经济上,在一个形式,应鼓励其他作者的地雷,它和适用的结果,他们自己的领域。这是一个很好的书,适合图书馆,参考的货架上,和任何人谁教或写植物驯化。杂志人种生物学 ;只有几年出版后,在1988年, zohary与Hopf的教科书,数量已经绝版的….一,不能感谢足够的作者,他们抓住机遇,更新这本书….一个不可或缺的参考咨询工作;了丰富的资料是在一个有系统的方式….这已经经典的教科书已充分证明它的价值,很难需要进一步的建议。

世界栽培植物

| Comments

Flora Publications, Australia, 1995


唐艾里森的热切期待已久的图案字典的栽培植物的世界是一个英雄的工作的比例。其598页的精美设计和约束,一个重要的新的角落,以一个世界早已赋予的书籍。标题宣布出版一不寻常的范围。怎么可能这么多被包含两涵盖?简短的答案是,它不能。这不是一次明显的被子植物(开花植物) ,不仅涵盖,裸子植物,包括针叶树,是被排除在外。


作者是澳大利亚,布里斯本基于horticulturist与一生的经验,在苗圃工作,无论是销售和宣传,谁后来经营种子生产业务。埃利森还一直积极在广播电台,并已致函有关园艺在一个较长的时期。在此谎言的线索背景下这家工厂的字典。


开始,简要说明,对植物分类与命名,作者举动,以涵盖种植的距离,气候和土壤,繁殖和植物的选择。这方面的资料是基本法,但将有助于许多。埃利森是在深水时,讨论植物分类。他写道: “真正的杂交种的选育,给出了种风格的名字与增补的×的迹象。举例来说达芙妮× burkwoodii ” 。这是我的理解是, ×符号代表种间杂交的两个物种,在这方面,例如之间的达芙妮caucasica和D cneorum 。该后代的这种跨不滋生属实。


对随意检查本字典,是所有它的承诺。清楚地印在光面纸,照片,多达10个每页,是有足够的大小作出鉴定广阔的植物可能。大多是特写镜头,花,赏叶,图像锐利和颜色准确的。大约5000份植物转载,在566页的图案参考。一个很好的指数得出结论,随着指标的常见名称和同义字。一个有用的功能,通过这本书是一个彩色保证金其中载有指导参考信息。很显然,这是物有所值。


“栽培植物的世界”将成为一个标准的参考在澳大利亚。这个问题必须要问,是否会同样的重视,新的新西兰人?便很容易让一个人的判断,要的阴云笼罩着,其规模和范围,由众多精彩的照片和由巨大的努力,作者和摄影师的一样。进一步研究表明,但是,从一个新的新西兰人的观点是,不仅是一个不平衡的,在植物选择过程之间的温暖和凉爽的气候,也有一个明确的偏向澳大利亚和'托儿'的植物,那就是植物与花卉花架子和/或叶面。例如有42个插图callistemon , 80 grevillea , 87条芙蓉, 84九重葛, 40 melaleuca ,有39个banksia和24一品红( euphobia pulcherrima ) ,而目前只有9栓皮栎, 4白桦和无无论是椴树或nyssa 。杜鹃花所代表的45照片,其中9个是物种和有额外的五十帧照片的杜鹃花属于该vireya节。大部分这些都是杂交种陌生的新的新西兰人不存在任何物种。


唐埃利森广泛旅行摄影植物。他还没有访问新西兰。读者会微笑,在cordyline对页178这显然是不长indivisa尚未惊叹于令人眼花缭乱的各种长终在澳洲出售。可以理解的数我们的本土植物已选定和普里里已成为pururi 。有几个错误,否则。


一些植物亲爱的,以新西兰园丁失踪:厚朴' iolanthe ' ,光'红罗宾' , azara microphylla ,山茱萸'埃迪的白色,难怪'春天的脑海。数花园在这里都没有lavatera '巴恩斯利'和杜鹃花yakushimanum ,这两者都是世界各地的最爱。同时应与内容等陌生的植物作为acokanthera , acrocarpus , aeschynanthus , afgekia , anthotroche ,不要忘记tetratheca , theobroma , thespesia和theretia 。这是一本书,为plantaholic

地球生物最丰富的国家

| Comments

Megadiversity在史密森学会的1988年生物多样性的招待会的一份文件中提出的概念。在生物多样性优先事项,由政治单位,在这种情况下的主权国家,而不是由生态系统。它认识到,一个很小的单位数目( 17个国家出于对全球200个+ )是在家中一过多大的比例,世界的生物多样性(美国,墨西哥,哥伦比亚,委内瑞拉,厄瓜多尔,秘鲁,巴西,刚果民主共和国,南非,印度,马达加斯加,马来西亚,印度尼西亚,中国,菲律宾,巴布亚新几内亚和澳大利亚) 。大部分的megadiversity地区的大,但几个人,例如那些在马达加斯加,菲律宾,厄瓜多尔和包高多样性纳入相对较小的土地面积。显然,他们有巨大的责任。在同一时间内,他们应考虑生物多样性,这是他们的一项最重要的长期经济assets.the书包含超过500个的宏伟全面的彩色照片的旗舰动物和植物物种,珍稀独特的物种,以及作为人类文化的蓬勃发展,以感谢他们的天然财富。其中一个最好的书籍nhbs前所未有的。

系统生物学研究推荐阅读文章

| Comments

研究趋势 (Trends in Systematic Biology)


Lubischew, A.A. 1969. Philosophical Aspects of Taxonomy. Ann. Rev. Entomol. 14:19-38.
Lauder, G.V. 1990. Functional Morphology and Systematics: Studying Functional Patterns in an Historical Context. Annual Review of Ecology and Systematics. 21:317-340.
Disney, H. 1998. Rescue plan needed for taxonomy. Nature. 394:120.
Page, R.D.M., Charleston, M.A. 1998. Trees within trees: phylogeny and historical associations. Trends in Ecology and Evolution. 13(9):356-359.
Wiens, J. J. 1999. Polymorphism in systematics and comparative biology. Annual Review of Ecology and Systematics. 30:327–362.
Gee, H. 2000. Online naming of species opens digital age for taxonomy. Nature. 408(6810):278.
VanDyk, J.K. 2000. Impact of the Internet on Extension Entomology. Ann. Rev. Entomol. 45:795–802.
Zenger, J.T., Walker, T.J. 2000. Impact of the Internet on entomology teaching and research. Annu Rev Entomol. 45:747-767.
Krell, F.T. 2000. Impact factors aren't relevant to taxonomy.  Nature. 405(6786):507-508.
Garfield, E. 2001. Taxonomy is small, but it has its citation classics. Nature. 413(6852):107.
Kurt, J., Steve, C. 2001. Taxonomy and the blues. Nature. 409:664-665.
Alroy, J. 2002. How many named species are valid?. National Academy of Sciences of the United States of America. 99(6):3706-3711
Bisby, F.A., Shimura, J., Ruggiero, M., Edwards, J., Haeuser, C. 2002. Taxonomy, at the click of a mouse. Nature. 418:367
Bonnet, X., Shine, R., Lourdais, O. 2002. Taxonomic chauvinism. Trends in Ecology and Evolution. 17(1):1-3.
Bryant, H.N., Cantino, P.D. 2002. A review of criticisms of phylogenetic nomenclature: is taxonomic freedom the fundamental issue?. Biol Rev Camb Philos Soc. 77(1):39-55.
Buckley, T.R. 2002. A statistical future for morphological phylogenetics?. Trends in Ecology and Evolution. 17(4):161.
Gewin, V. 2002. All living things, online. Nature. 418(6896):362-363.
Godfray, H.C. 2002. Challenges for taxonomy. Nature. 417:17-19.
Krell, F.T. 2002. Why impact factors don't work for taxonomy. Nature.  415:957.
Mayr, E., Bock, W. J. 2002. Classifications and other ordering systems. Journal of Zoological Systematics & Evolutionary Research. 40(4):169-194.
Noor, M.A.F. 2002.  Is the biological species concept showing its age?. Trends in Ecology and Evolution. 17(4):153-154.
Krell, F.T. 2002. Why impact factors don't work for taxonomy. Nature. 415:957.
Grant, T., Faivovich, J., Pol, D. 2003. The perils of 'point-and-click' systematics. Cladistics. 19(3):276-285.
Kocher, T.D. 2003. Fractious phylogenies. Nature. 423:489-491.
Lipscomb, D., Platnick, N., Wheeler, Q. 2003. The intellectual content of taxonomy: a comment on DNA taxonomy. Trends in Ecology and Evolution. 18(2):65-66.
Lydon, S.J., Wood, M. M., Huxley, R., Sutton, D. 2003. Data patterns in multiple botanical descriptions: implications for automatic processing of legacy data. Systematics and Biodiversity. 1(2):151-157.
Minelli, A. 2003. The status of taxonomic literature. Trends in Ecology and Evolution. 18(2):75-76.
Ronquist, F., Gardenfors, U. 2003. Taxonomy and biodiversity inventories. Trends in Ecology and Evolution. 18(6):269-270.
Stoeckle, M. 2003. Taxonomy, DNA, and the Bar Code of Life. BioScience. 53(9): 796-797.
Vane-Wright, R. I. 2003. Indifferent Philosophy versus Almighty Authority: on consistency, consensus and unitary taxonomy. Systematics and Biodiversity. 1(1): 3-11.
Basset, Y., Novotny, V., Miller, S.E., Weiblen, G.D., Missa, O., Stewart, A.J.A. 2004. Conservation and biological monitoring of tropical forests: the role of parataxonomists. Journal of Applied Ecology. 41(1):163-174.
Braby, M., Douglas, F. 2004. The taxonomy, ecology and conservation status of the Golden-rayed Blue: a threatened butterfly endemic to western Victoria, Australia. Biological Journal of the Linnean Society. 81:275-299.
Taylor, A. 2004. Taxonomy in support of biodiversity conservation – negotiating the acronym jungle. Systematics and Biodiversity. 2(2):111–112.
Polaszek, A. 2005. A universal register for animal names. Nature. 437(7058):477.
Borrell, B. 2007. Linnaeus at 300: The big name hunters. Nature. 446:253-255.
Friis, E.M., Crane, P. 2007. New home for tiny aquatics. Nature. 446(7133):269-270.
Godfray, H.C.J. 2007.  Linnaeus at 300: Linnaeus in the information age. Nature. 446:259-260.
Knapp, S., Polaszek, A., Watson, M. 2007. Spreading the word. Nature. 446:261-262.
Mallet, J. 2007. Hybrid speciation. Nature. 446(7133):279-283.
Marris, E. 2007. Linnaeus at 300: the species and the specious. Nature. 446(7133):250-253.
Saarela, J.M., Rai, H.S., Doyle, J.A., Endress, P.K., Mathews, S., Marchant, A.D., Briggs, B.G, Graham, S.W. 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature. 446(7133):312-315.
Whitfield, J. 2007. Linnaeus at 300: We are family. Nature. 446:247-249.
Unknown. 2007. The legacy of Linnaeus: Taxonomy in an age of transformation. Nature. 446:231-232.


生命条形码 (Barcode of Life)
Tautz, D., Arctander, P., Minelli, A., Thomas, R.H., Vogler, A.P. 2002. DNA points the way ahead in taxonomy. Nature. 418(6897):479.
Andersen, N.M. 2003. Shortcuts in systematics? A commentary on DNA-based taxonomy. Trends in Ecology and Evolution. 18(3):63-65.
Dunn, C.P. 2003. Keeping taxonomy based in morphology. Trends in Ecology and Evolution. 18:270-271
Hebert, P.D., Ratnasingham S, deWaard Jr. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B Biol. Sci. 270: 96–99.
Proudlove, G., Wood, P.J. 2003. The blind leading the blind: cryptic subterranean species and DNA taxonomy. Trends in Ecology and Evolution. 18(6):272-273.
Seberg, O., Humphries, C.J., Knapp, S., Stevenson, D.W., Petersen, G., Scharff, N., Mallet, J., Willmott, K. 2003. Taxonomy: renaissance or Tower of Babel?. Trends in Ecology and Evolution. 18(2):57-59.
Tautz, D., Arctander, P., Minelli, A., Thomas, R.H., Vogler, A.P. 2003. A plea for DNA taxonomy. Trends in Ecology and Evolution. 18(5): 70-74.
Blaxter, M.L. 2004. The promise of a DNA taxonomy. Philos Trans R Soc Lond B Biol Sci. 359(1444):669-679.
Bock, W. J. 2004. Species: the concept, category and taxon. Journal of Zoological Systematics and. Evolutionary Research 42: 178-190.
Hebert, P.D., Penton, E.H., Burns, J.M., Janzen, D.H., Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U.S.A. 101(41):14812-14817.
Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., Francis, C.M. 2004. A Test Case for DNA Barcodes to Identify Species. PLoS Biol. 2(10): 1505.
Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., Francis, C.M. 2004. Identification of Birds through DNA Barcodes. PLoS Biol. 2(10):e312(1657-1663).
Jenner, R.A. 2004. Accepting Partnership by Submission? Morphological Phylogenetics in a Molecular Millennium. Systematic Biology. 53(10): 333-342.
Lee, M.S.Y. 2004. The molecularisation of taxonomy. Invertebrate Systematics. 18(1):1-6.
Moritz, C., Cicero, C. 2004. DNA barcoding: promise and pitfalls. PLoS Biol. 2(10):e354(1529-1531).
Scoble, M.J. 2004. Unitary or unified taxonomy?. Philos Trans R Soc Lond B Biol Sci. 359(1444):699-710.
Wheeler, Q.D. 2004. Taxonomic triage and the poverty of phylogeny. Philos Trans R Soc Lond B Biol Sci. 359(1444

   original link:
   <a href='http://Apiaceae.github.io/blog/2009/03/15/%E7%B3%BB%E7%BB%9F%E7%94%9F%E7%89%A9%E5%AD%A6%E7%A0%94%E7%A9%B6%E6%8E%A8%E8%8D%90%E9%98%85%E8%AF%BB%E6%96%87%E7%AB%A0/'>http://Apiaceae.github.io/blog/2009/03/15/%E7%B3%BB%E7%BB%9F%E7%94%9F%E7%89%A9%E5%AD%A6%E7%A0%94%E7%A9%B6%E6%8E%A8%E8%8D%90%E9%98%85%E8%AF%BB%E6%96%87%E7%AB%A0/</a><br/>
   &nbsp;written by <a href='http://Apiaceae.github.io'>Hooker</a>
   &nbsp;posted at <a href='http://Apiaceae.github.io'>http://Apiaceae.github.io</a>
   </p>

植物生物地理学格局研究进展

| Comments

生物地理学是记录和理解生物有机体空间格局的学科,它研究生物过去和现在的地理分布,理解改变物种和生物群系(Biota)空间格局的生物学和自然地理过程(Brown & Gibson, 1983; Cox & Moore, 1993; Brown & Lomolino, 1998; Cox & Moore, 2000; Avise, 2004)。或更为简单的定义为:有机体地理分布的研究(Crisci, 2001; Crisci, & al., 2003)。尽管生物学家们对生物地理学基本上是格局的发现和过程解释的科学逻辑都一直认同(Brown & Lomolino, 1998),然而对相同格局下原因性过程的解释却存在相当不一致的观点。

在过去的20年里,分支系统学理论和方法在生物地理学问题中的应用(Nelson & Platnick, 1981; Wiley, 1988; Brooks & McLennan, 1991; Bremer, 1992; Harold & Mooi, 1994; Morrone, 1994; Bremer, 1995; Morrone & Crisci, 1995; Ronquist, 1997; Humphries & Parenti, 1999; Morrone, 2001; Morrone., 2002; Morrone, 2005)、生物地理学研究认识论和科学基础的争论(Nelson & Ladiges, 1996; Hovenkamp, 1997; Morrone, 2001; Ebach & Humphries., 2002; Morrone., 2002; van Veller, & al., 2002; Wilkinson, 2003; Van Veller, 2004; Ebach, & al., 2005; Ebach & Morrone, 2005; Knapp, 2005; Morrone, 2005; Riddle, 2005),使生物地理学研究经历了一场非凡的革命(Crisci, 2001)。从传统的经验性描述方法,转向了以量化分析方法对格局的发现;以事件为基础的过程模型的建立;格局和过程关系假说的检验这样一个严格的分析论证的研究领域。

 

生物地理学在科学基础、基本概念、方法论、认识论上的多样化体现在各种经典生物地理学教科书所显示的研究主题。例如:分析生物地理学(Myers & Giller, 1988)、动态生物地理学(Hengeveld, 1990)、历史生物地理学(Crisci, & al., 2003)、分支生物地理学(Humphries & Parenti, 1999)、岛屿生物地理学(Whittaker, 1998; MacArthur & Wilson, 2001)、泛生物地理学(Craw, & al., 1999)、系统发育生物地理学(Avise, 2000)、地区生物地理学(Morain, 1984)、隔离分化生物地理学(Nelson & Platnick, 1981)、古生物地理学(Lieberman, 2000)等。
@eur ~/~0源于早期19世纪博物学家de Candolle(de Candolle, 1820)对植物地理分布格局解释在不同的空间和时间尺度上的考虑(Nelson, 1978; Lieberman, 2000; Crisci, 2001),研究实践中生物地理学常被划分为历史生物地理学和生态生物地理学两个阵营(Myers & Giller, 1988; Brown & Lomolino, 1998; Cox & Moore, 2000; Crisci, & al., 2003; Crisci, & al., 2006)。生物学家们普遍认为历史生物地理学涉及大的,经常是全球尺度上上百万年的进化过程,生态生物地理学主要涉及发生在较短的时间和小空间尺度上的生态学过程(Myers & Giller, 1988; Cox & Moore, 2000; Lieberman, 2000; Crisci, 2001; Lieberman, 2003; Crisci, & al., 2006)。

        尽管生物地理学在研究实践上的多样性和争论,在前达尔文时期所提出的许多有趣的生物地理问题今天依然是生物地理学家们尝试进行回答的问题(Browne,1983)。其中有些已经被凝练为生物地理学研究永恒的主题。例如:

  1. 根据地球上生长的生物群系对自然地理区域的分类(世界生物地理区划);
  2. 重建生物群系的历史形成过程,包括它们的起源、扩散和多样化;
  3. 解释不同地理区域间生物种类、数目的差异;
  4. 以亲缘类群个体和居群的特征来解释地理变异特点,包括形态学、行为、居群动态的趋势等(Brown & Lomolino, 1998)。

 

  以世界生物地理区划的研究为例,从最早布丰根据哺乳动物对世界生物地理区域的考虑(Buffon, 1707-1789),到19世纪Wallace(Wallace, 1876)和Engler(Engler, 1879-1882)对世界动植物区、地区的划分,20世纪的Diels(Diels, 1908), Good(Good, 1947, 1953, 1964, 1974 1964, 1974 #6185)的修订,到Takhtajan(Takhtajan, 1978; Takhtajan, 1986)的世界植物区系区划方案,以及在此基础上由Cox(Cox, 2001)和Morrone(Morrone., 2002)分别修订的版本,吴征镒(Wu, 1996)提出的东亚植物区系界的新方案等,都遵循的一个基本前提,那就是早期布丰(Buffon, 1707-1789)所观察到的现象:世界不同地区具有相当不同的生物类群和生物群系,也就是著名的布丰法则(Nelson, 1978; Brown & Lomolino, 1998)。布丰法则是对早期前进化论时期,林奈等非进化理论指导下,以起源中心-散布假说,物种时间和空间上的不变性和静态观点来解释地理分布格局的思想颠覆。他给我们提供了现代生物地理学理论的两个关键的组成部分:气候和物种是可变的(Brown & Lomolino, 1998)

尽管我们认同生物在进化过程中会经历相同或者相似的地质学、气候事件的影响,然而由于类群起源时间、生物学特征、多样化速率、环境适应性的差异,植物类群的生物地理区划相当不同于动物学家们(Prichard, 1826; Swainson, 1835; Sclater, 1858; Darlington, 1957; Simpson, 1962)的考虑。

 


        生物地理区划本质就是对生物地理格局的发现。基于被子植物地理分布的全球分析必然发现的是被子植物全球地理格局特征,这一格局并不一定能够适用于哺乳动物或者是鸟类,但由于地球和生命有机体进化的一致性(Croizat, 1958; Croizat, 1964,1981,1982),不同生物类群所表现的生物地理格局将有可能存在不同程度的相关和一致性(Nelson & Platnick, 1981; Humphries & Parenti, 1999)。例如代表典型冈瓦纳-南半球间断分布式样的南山毛榉(Nothophagus)(Melville, 1982; Heads, 1985; Martin & Dowd, 1993; Linder & Crisp, 1995,1998; Poole, 2002)和平胸鸟类(ratite birds)(Brown & Lomolino, 1998),环热带间断分布的Phacelia、Sanicula、Bowleisia、Osmorhiza(Solbrig, 1972b,a)。正是由于这种生物地理学普遍格局的存在,使我们有可能发现导致这些共有格局的重要地质、气候、生物迁移事件、绝灭,从而重建生物地理格局的历史。在格局分析的基础上对产生这种格局的过程的解释就构成了我们对生物地理学的理解。

 


 基于全球动植物地理分布的区划方案为基于特别类群研究,找寻其地理起源中心或者多样化中心的研究(Hooker, 1844-1860; Darwin, 1859; Hooker, 1859,1861,1866,1881; Hill, 1929; Takhtajan, 1957; Takhtajan, 1969; Raven & Axelrod, 1974; Beck, 1976; Takhtajan, 1986)提供了一个可参考的地理分类方案,也是传统植物区系地理学研究中划分区系成分、类群地理成分,探讨区系的来源和演化的重要依据。

 

然而,早期这些全球生物地理学格局研究的工作由于缺乏全面的生物多样性知识的积累,存在较大的局限性。在面对大量类群和地理分布信息时,缺乏有效的定
,PK;x s]%&quot;L#o:PE#`0量分析以及多元统计方法上的检验(Proches, 2005),结论的推断存在相当大程度上的经验性。对全球生物区划大尺度方案下进一步的生物地理区域的细化,目前主要依靠专家知识和替代性环境变量,如土壤类型、气候、地质和植被类型等的考虑(Thackway & Cresswell, 1995; Adey & Steneck, 2001; Olson, & al., 2001)。虽然近年来有基于类群全球性分布的研究(Conran, 1995; Proches & Marshall, 2001),科和属级水平生物地理学格局的探讨(Gaston & Blackburn, 1995; Gaston, & al., 1995; Gaston, 1996; Qian, 1998; Qian, 1999; Qian & Ricklefs, 1999,2000; Kier & Barthlott, 2001; Qian, 2001; Qian, 2002; Gaston, 2003; Qian, & al., 2003; Qian & Ricklefs, 2004)和全球维管植物多样性格局的研究(Barthlott, & al., 1996; Barthlott, & al., 1999; Barthlott, & al., 2005; Kier, & al., 2005; Mutke & Barthlott, 2005),量化分析和统计检验技巧的应用(Williams, & al., 1999; Qian, 2001; Kingston, & al., 2003; Proches, 2005),但都缺乏建立全球格局或者说生物地理学区划方案的考虑,同时上述这些研究多侧重生态时间和过程的考

   original link:
   <a href='http://Apiaceae.github.io/blog/2009/03/15/%E6%A4%8D%E7%89%A9%E7%94%9F%E7%89%A9%E5%9C%B0%E7%90%86%E5%AD%A6%E6%A0%BC%E5%B1%80%E7%A0%94%E7%A9%B6%E8%BF%9B%E5%B1%95/'>http://Apiaceae.github.io/blog/2009/03/15/%E6%A4%8D%E7%89%A9%E7%94%9F%E7%89%A9%E5%9C%B0%E7%90%86%E5%AD%A6%E6%A0%BC%E5%B1%80%E7%A0%94%E7%A9%B6%E8%BF%9B%E5%B1%95/</a><br/>
   &nbsp;written by <a href='http://Apiaceae.github.io'>Hooker</a>
   &nbsp;posted at <a href='http://Apiaceae.github.io'>http://Apiaceae.github.io</a>
   </p>

美国自然科学基金对数字化标本平台的支持

| Comments

The US National Science Foundation has awarded a Research Coordination Grant entitled: Building a National Community of Natural History Collections.  The purpose of the RCN is to build a strong scientific community to better serve researchers in systematics, biodiversity, and other fields that use natural history collections. Three professional organizations, the American Institute of Biological Sciences, the Natural Science Collections Alliance, and the Society for the Preservation of Natural History Collections will provide strong support as partners in the RCN, and many other societies have already built ties with the RCN by appointing Core Participants.

     The RCN has the following objectives:

  •  Identify the institutions and people that will define our community and facilitate dialogue among them about how to better serve the needs of researchers,

  • identify major opportunities and challenges in the current environment and foreseeable future and develop a strategic plan for the future of collections research,

  • determine how to strengthen and modernize the role of collections in education and outreach, and

  • identify the primary needs of collections regarding care, curation, storage, and accessibility.

       The objectives will be met with a series of workshops, symposia, internships, and a website, www.CollectionsWeb.org <http://www.collectionsweb.org/> , which will provide a forum for interaction, host workshop reports, provide information on ways to become involved in the RCN, and provide links to resources for NHC.

        Several major community resources will be developed, including a catalogue of NHC, a survey of the status of NHC, a register of curatorial expertise, and an inventory of innovative and successful educational programs.

Broadening minority participation in collections activities is a goal of the RCN. 

     The initial steering committee members are Henry L. Bart (Tulane University, vertebrate systematics), Meredith Blackwell (Louisiana State University, fungal systematics), L. Alan Prather (Michigan State University, plant

systematics) and James B. Woolley (Texas A & M University, invertebrate systematics).

           Announcements of upcoming events, opportunities to get involved, and reports will be posted to the website, so please check back often. Your input is essential!  Contact us at http://www.collectionsweb.org/about/steering_committee.html .

什么是生命科学识别码-LSID

| Comments

Life Science Identifiers (LSIDs) are persistent, location-independent, resource identifiers for uniquely naming biologically significant resources including species names, concepts, occurrences, genes or proteins, or data objects that encode information about them. To put it simply, LSIDs are a way to identify and locate pieces of biological information on the web.

The LSID concept introduces a straightforward approach to naming and identifying data resources stored in multiple, distributed data stores in a manner that overcomes the limitations of naming schemes in use today. Almost every public, internal, or department-level data store today has its own way of naming individual data resources, making integration between different data sources a tedious, never-ending chore for informatics developers and researchers.

By defining a simple, common way to identify and access biologically significant data, whether that data is stored in files, relational databases, in applications, or in internal or public data sources, LSID provides a naming standard underpinning for wide-area science and interoperability.

The Life Sciences Identifier is an Object Management Group (OMG) Final Adopted Specification developed by the Life Sciences Research (LSR).

生物地理学空间单元的分类

| Comments

Biochore classification and nomenclature in paleobiogeography: an attempt at order Gerd E.G. Westermann

Abstract: Paleobiogeographic terminology has increased dramatically in recent decades, but the absence of ‘rules’ or even a guide has resulted in confusion and misunderstanding. The Friends of Paleobiogeography are attempting to solve problems related to classification, definition and nomenclature of the biogeographic units (biochores), in conjunction with neobiogeographers. Historic and current developments are discussed. Biochores are highly dynamic units that not only expand and shrink in range, but also change in rank (tier) through time. They should be based on as many higher taxa as possible representing the biota, but from a single major biome, e.g. pelagic versus benthic; different biomes may need distinct sets of biochores. The following tentative ‘rules’ are proposed for a prospective guide for the distinction, ranking and naming of biochores, with emphasis on stability.

     

  • Definition: a biochore is defined by the overall endemism of its biota (not particular taxa) within a geographic envelope around a core area, whereas biochore boundaries are defined by the temporary range limits of their constituent endemic taxa.

     

  • Ranks (tiers): the biochores ranks are, with ‘bold’ for obligatory use and an additional tentative rank for exceptional conditions in brackets: [Superrealm], Realm, Subrealm, Province, Subprovince; ‘region’ is for informal use. Ranks scale with the degree of endemism as well as duration and biota distribution (range).

     

  • A typical region or chorotype and a typical stage (age) or chronotype are designated for each biochore.

     

  • Nomenclature: biochore names are geographic and related terms, not taxa-based. Nomenclatural priority begins with Uhlig [Mitt. Geol. Ges. Wien 4 (3) (1911) 229–448]. ‘Rules of Homology’ and ‘Synonymy’ apply in guide form only, e.g. long-term disuse of name or poor definition of biota invalidates synonym or homonym even if senior. Keywords: biogeography; classification; nomenclature; paleobiogeography; terminology

创业过程中最大的挑战是如何改变自己

| Comments

创业过程中,你所需要的人总是姗姗来迟。你经常面临这样的选择:要么不做,要么自己硬着头皮顶上去,哪怕是从未做过,哪怕是自己不喜欢的事,任何借口和退缩都会放慢你前进的步伐,甚至让你停滞不前。不要幻想等以后找到合适的人再做,只有你先做起来,以后才有可能找到人代替你做得更好。

改变自己,不仅是改变自己的能力,擅长的要更擅长,不擅长的变成擅长,还要改变自己的性格,克服自己性格上的弱点。一个人最大的敌人是自己,创业中最大的障碍也许就是创业者自己。   

   original link:
   <a href='http://Apiaceae.github.io/blog/2009/03/15/change-yourself-success/'>http://Apiaceae.github.io/blog/2009/03/15/change-yourself-success/</a><br/>
   &nbsp;written by <a href='http://Apiaceae.github.io'>Hooker</a>
   &nbsp;posted at <a href='http://Apiaceae.github.io'>http://Apiaceae.github.io</a>
   </p>